Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068992

RESUMO

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease characterized by the presence of the BCR-ABL fusion gene, which results from the Philadelphia chromosome. Since the introduction of tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM), the clinical outcomes for patients with CML have improved significantly. However, IM resistance remains the major clinical challenge for many patients, underlining the need to develop new drugs for the treatment of CML. The basis of CML cell resistance to this drug is unclear, but the appearance of additional genetic alterations in leukemic stem cells (LSCs) is the most common cause of patient relapse. However, several groups have identified a rare subpopulation of CD34+ stem cells in adult patients that is present mainly in the bone marrow and is more immature and pluripotent; these cells are also known as very small embryonic-like stem cells (VSELs). The uncontrolled proliferation and a compromised differentiation possibly initiate their transformation to leukemic VSELs (LVSELs). Their nature and possible involvement in carcinogenesis suggest that they cannot be completely eradicated with IM treatment. In this study, we demonstrated that cells from CML patients with the VSELs phenotype (LVSELs) similarly harbor the fusion protein BCR-ABL and are less sensitive to apoptosis than leukemic HSCs after IM treatment. Thus, IM induces apoptosis and reduces the proliferation and mRNA expression of Ki67 more efficiently in LHSCs than in leukemic LVSELs. Finally, we found that the expression levels of some miRNAs are affected in LVSELs. In addition to the tumor suppressor miR-451, both miR-126 and miR-21, known to be responsible for LSC leukemia-initiating capacity, quiescence, and growth, appear to be involved in IM insensitivity of LVSELs CML cell population. Targeting IM-resistant CML leukemic stem cells by acting via the miRNA pathways may represent a promising therapeutic option.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Adulto , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , MicroRNAs/metabolismo , Apoptose , Células-Tronco/metabolismo , Células-Tronco Neoplásicas/metabolismo
2.
Blood Adv ; 7(1): 46-59, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269841

RESUMO

Mice lacking the immunoreceptor tyrosine-based inhibition motif-containing co-inhibitory receptor G6b-B (Mpig6b, G6b knockout, KO) are born with a complex megakaryocyte (MK) per platelet phenotype, characterized by severe macrothrombocytopenia, expansion of the MK population, and focal myelofibrosis in the bone marrow and spleen. Platelets are almost completely devoid of the glycoprotein VI (GPVI)-FcRγ-chain collagen receptor complex, have reduced collagen integrin α2ß1, elevated Syk tyrosine kinase activity, and a subset has increased surface immunoglobulins. A similar phenotype was recently reported in patients with null and loss-of-function mutations in MPIG6B. To better understand the cause and treatment of this pathology, we used pharmacological- and genetic-based approaches to rescue platelet counts and function in G6b KO mice. Intravenous immunoglobulin resulted in a transient partial recovery of platelet counts, whereas immune deficiency did not affect platelet counts or receptor expression in G6b KO mice. Syk loss-of-function (R41A) rescued macrothrombocytopenia, GPVI and α2ß1 expression in G6b KO mice, whereas treatment with the Syk kinase inhibitor BI1002494 partially rescued platelet count but had no effect on GPVI and α2ß1 expression or bleeding. The Src family kinase inhibitor dasatinib was not beneficial in G6b KO mice. In contrast, treatment with the thrombopoietin mimetic romiplostim rescued thrombocytopenia, GPVI expression, and platelet reactivity to collagen, suggesting that it may be a promising therapeutic option for patients lacking functional G6b-B. Intriguingly, GPVI and α2ß1 expression were significantly downregulated in romiplostim-treated wild-type mice, whereas GPVI was upregulated in romiplostim-treated G6b KO mice, suggesting a cell intrinsic feedback mechanism that autoregulates platelet reactivity depending on physiological needs.


Assuntos
Plaquetas , Trombocitopenia , Camundongos , Animais , Plaquetas/metabolismo , Megacariócitos/metabolismo , Trombocitopenia/genética , Quinases da Família src/metabolismo , Colágeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...